metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C22×D5).1Q8, C22.43(Q8×D5), C10.8(C4⋊D4), (C2×Dic5).22D4, (C22×C4).21D10, C22.160(D4×D5), C2.C42⋊5D5, C5⋊1(C23.Q8), C2.7(C42⋊2D5), C10.27(C22⋊Q8), C2.11(D10⋊D4), (C23×D5).8C22, C10.2(C42⋊2C2), C2.11(D10⋊Q8), C22.93(C4○D20), (C22×C20).20C22, C23.364(C22×D5), (C22×C10).301C23, (C22×Dic5).23C22, (C2×C10).70(C2×Q8), (C2×C10.D4)⋊4C2, (C2×C10).208(C2×D4), (C2×C10).61(C4○D4), (C5×C2.C42)⋊2C2, (C2×D10⋊C4).11C2, SmallGroup(320,303)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C22×D5).Q8
G = < a,b,c,d,e,f | a2=b2=c5=d2=e4=1, f2=ae2, ab=ba, ac=ca, ede-1=ad=da, ae=ea, af=fa, bc=cb, fdf-1=bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, fef-1=be-1 >
Subgroups: 790 in 186 conjugacy classes, 59 normal (12 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, Dic5, C20, D10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C2×Dic5, C2×Dic5, C2×C20, C22×D5, C22×D5, C22×C10, C23.Q8, C10.D4, D10⋊C4, C22×Dic5, C22×C20, C23×D5, C5×C2.C42, C2×C10.D4, C2×D10⋊C4, (C22×D5).Q8
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C4○D4, D10, C4⋊D4, C22⋊Q8, C42⋊2C2, C22×D5, C23.Q8, C4○D20, D4×D5, Q8×D5, C42⋊2D5, D10⋊D4, D10⋊Q8, (C22×D5).Q8
(1 36)(2 37)(3 38)(4 39)(5 40)(6 31)(7 32)(8 33)(9 34)(10 35)(11 26)(12 27)(13 28)(14 29)(15 30)(16 21)(17 22)(18 23)(19 24)(20 25)(41 76)(42 77)(43 78)(44 79)(45 80)(46 71)(47 72)(48 73)(49 74)(50 75)(51 66)(52 67)(53 68)(54 69)(55 70)(56 61)(57 62)(58 63)(59 64)(60 65)(81 116)(82 117)(83 118)(84 119)(85 120)(86 111)(87 112)(88 113)(89 114)(90 115)(91 106)(92 107)(93 108)(94 109)(95 110)(96 101)(97 102)(98 103)(99 104)(100 105)(121 156)(122 157)(123 158)(124 159)(125 160)(126 151)(127 152)(128 153)(129 154)(130 155)(131 146)(132 147)(133 148)(134 149)(135 150)(136 141)(137 142)(138 143)(139 144)(140 145)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 20)(7 19)(8 18)(9 17)(10 16)(21 35)(22 34)(23 33)(24 32)(25 31)(26 40)(27 39)(28 38)(29 37)(30 36)(41 70)(42 69)(43 68)(44 67)(45 66)(46 65)(47 64)(48 63)(49 62)(50 61)(51 80)(52 79)(53 78)(54 77)(55 76)(56 75)(57 74)(58 73)(59 72)(60 71)(81 85)(82 84)(86 90)(87 89)(91 95)(92 94)(96 100)(97 99)(101 105)(102 104)(106 110)(107 109)(111 115)(112 114)(116 120)(117 119)(121 160)(122 159)(123 158)(124 157)(125 156)(126 155)(127 154)(128 153)(129 152)(130 151)(131 150)(132 149)(133 148)(134 147)(135 146)(136 145)(137 144)(138 143)(139 142)(140 141)
(1 56 16 41)(2 57 17 42)(3 58 18 43)(4 59 19 44)(5 60 20 45)(6 51 11 46)(7 52 12 47)(8 53 13 48)(9 54 14 49)(10 55 15 50)(21 76 36 61)(22 77 37 62)(23 78 38 63)(24 79 39 64)(25 80 40 65)(26 71 31 66)(27 72 32 67)(28 73 33 68)(29 74 34 69)(30 75 35 70)(81 131 96 126)(82 132 97 127)(83 133 98 128)(84 134 99 129)(85 135 100 130)(86 136 91 121)(87 137 92 122)(88 138 93 123)(89 139 94 124)(90 140 95 125)(101 151 116 146)(102 152 117 147)(103 153 118 148)(104 154 119 149)(105 155 120 150)(106 156 111 141)(107 157 112 142)(108 158 113 143)(109 159 114 144)(110 160 115 145)
(1 101 21 81)(2 102 22 82)(3 103 23 83)(4 104 24 84)(5 105 25 85)(6 106 26 86)(7 107 27 87)(8 108 28 88)(9 109 29 89)(10 110 30 90)(11 111 31 91)(12 112 32 92)(13 113 33 93)(14 114 34 94)(15 115 35 95)(16 116 36 96)(17 117 37 97)(18 118 38 98)(19 119 39 99)(20 120 40 100)(41 141 61 121)(42 142 62 122)(43 143 63 123)(44 144 64 124)(45 145 65 125)(46 146 66 126)(47 147 67 127)(48 148 68 128)(49 149 69 129)(50 150 70 130)(51 151 71 131)(52 152 72 132)(53 153 73 133)(54 154 74 134)(55 155 75 135)(56 156 76 136)(57 157 77 137)(58 158 78 138)(59 159 79 139)(60 160 80 140)
G:=sub<Sym(160)| (1,36)(2,37)(3,38)(4,39)(5,40)(6,31)(7,32)(8,33)(9,34)(10,35)(11,26)(12,27)(13,28)(14,29)(15,30)(16,21)(17,22)(18,23)(19,24)(20,25)(41,76)(42,77)(43,78)(44,79)(45,80)(46,71)(47,72)(48,73)(49,74)(50,75)(51,66)(52,67)(53,68)(54,69)(55,70)(56,61)(57,62)(58,63)(59,64)(60,65)(81,116)(82,117)(83,118)(84,119)(85,120)(86,111)(87,112)(88,113)(89,114)(90,115)(91,106)(92,107)(93,108)(94,109)(95,110)(96,101)(97,102)(98,103)(99,104)(100,105)(121,156)(122,157)(123,158)(124,159)(125,160)(126,151)(127,152)(128,153)(129,154)(130,155)(131,146)(132,147)(133,148)(134,149)(135,150)(136,141)(137,142)(138,143)(139,144)(140,145), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,20)(7,19)(8,18)(9,17)(10,16)(21,35)(22,34)(23,33)(24,32)(25,31)(26,40)(27,39)(28,38)(29,37)(30,36)(41,70)(42,69)(43,68)(44,67)(45,66)(46,65)(47,64)(48,63)(49,62)(50,61)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(81,85)(82,84)(86,90)(87,89)(91,95)(92,94)(96,100)(97,99)(101,105)(102,104)(106,110)(107,109)(111,115)(112,114)(116,120)(117,119)(121,160)(122,159)(123,158)(124,157)(125,156)(126,155)(127,154)(128,153)(129,152)(130,151)(131,150)(132,149)(133,148)(134,147)(135,146)(136,145)(137,144)(138,143)(139,142)(140,141), (1,56,16,41)(2,57,17,42)(3,58,18,43)(4,59,19,44)(5,60,20,45)(6,51,11,46)(7,52,12,47)(8,53,13,48)(9,54,14,49)(10,55,15,50)(21,76,36,61)(22,77,37,62)(23,78,38,63)(24,79,39,64)(25,80,40,65)(26,71,31,66)(27,72,32,67)(28,73,33,68)(29,74,34,69)(30,75,35,70)(81,131,96,126)(82,132,97,127)(83,133,98,128)(84,134,99,129)(85,135,100,130)(86,136,91,121)(87,137,92,122)(88,138,93,123)(89,139,94,124)(90,140,95,125)(101,151,116,146)(102,152,117,147)(103,153,118,148)(104,154,119,149)(105,155,120,150)(106,156,111,141)(107,157,112,142)(108,158,113,143)(109,159,114,144)(110,160,115,145), (1,101,21,81)(2,102,22,82)(3,103,23,83)(4,104,24,84)(5,105,25,85)(6,106,26,86)(7,107,27,87)(8,108,28,88)(9,109,29,89)(10,110,30,90)(11,111,31,91)(12,112,32,92)(13,113,33,93)(14,114,34,94)(15,115,35,95)(16,116,36,96)(17,117,37,97)(18,118,38,98)(19,119,39,99)(20,120,40,100)(41,141,61,121)(42,142,62,122)(43,143,63,123)(44,144,64,124)(45,145,65,125)(46,146,66,126)(47,147,67,127)(48,148,68,128)(49,149,69,129)(50,150,70,130)(51,151,71,131)(52,152,72,132)(53,153,73,133)(54,154,74,134)(55,155,75,135)(56,156,76,136)(57,157,77,137)(58,158,78,138)(59,159,79,139)(60,160,80,140)>;
G:=Group( (1,36)(2,37)(3,38)(4,39)(5,40)(6,31)(7,32)(8,33)(9,34)(10,35)(11,26)(12,27)(13,28)(14,29)(15,30)(16,21)(17,22)(18,23)(19,24)(20,25)(41,76)(42,77)(43,78)(44,79)(45,80)(46,71)(47,72)(48,73)(49,74)(50,75)(51,66)(52,67)(53,68)(54,69)(55,70)(56,61)(57,62)(58,63)(59,64)(60,65)(81,116)(82,117)(83,118)(84,119)(85,120)(86,111)(87,112)(88,113)(89,114)(90,115)(91,106)(92,107)(93,108)(94,109)(95,110)(96,101)(97,102)(98,103)(99,104)(100,105)(121,156)(122,157)(123,158)(124,159)(125,160)(126,151)(127,152)(128,153)(129,154)(130,155)(131,146)(132,147)(133,148)(134,149)(135,150)(136,141)(137,142)(138,143)(139,144)(140,145), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,20)(7,19)(8,18)(9,17)(10,16)(21,35)(22,34)(23,33)(24,32)(25,31)(26,40)(27,39)(28,38)(29,37)(30,36)(41,70)(42,69)(43,68)(44,67)(45,66)(46,65)(47,64)(48,63)(49,62)(50,61)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(81,85)(82,84)(86,90)(87,89)(91,95)(92,94)(96,100)(97,99)(101,105)(102,104)(106,110)(107,109)(111,115)(112,114)(116,120)(117,119)(121,160)(122,159)(123,158)(124,157)(125,156)(126,155)(127,154)(128,153)(129,152)(130,151)(131,150)(132,149)(133,148)(134,147)(135,146)(136,145)(137,144)(138,143)(139,142)(140,141), (1,56,16,41)(2,57,17,42)(3,58,18,43)(4,59,19,44)(5,60,20,45)(6,51,11,46)(7,52,12,47)(8,53,13,48)(9,54,14,49)(10,55,15,50)(21,76,36,61)(22,77,37,62)(23,78,38,63)(24,79,39,64)(25,80,40,65)(26,71,31,66)(27,72,32,67)(28,73,33,68)(29,74,34,69)(30,75,35,70)(81,131,96,126)(82,132,97,127)(83,133,98,128)(84,134,99,129)(85,135,100,130)(86,136,91,121)(87,137,92,122)(88,138,93,123)(89,139,94,124)(90,140,95,125)(101,151,116,146)(102,152,117,147)(103,153,118,148)(104,154,119,149)(105,155,120,150)(106,156,111,141)(107,157,112,142)(108,158,113,143)(109,159,114,144)(110,160,115,145), (1,101,21,81)(2,102,22,82)(3,103,23,83)(4,104,24,84)(5,105,25,85)(6,106,26,86)(7,107,27,87)(8,108,28,88)(9,109,29,89)(10,110,30,90)(11,111,31,91)(12,112,32,92)(13,113,33,93)(14,114,34,94)(15,115,35,95)(16,116,36,96)(17,117,37,97)(18,118,38,98)(19,119,39,99)(20,120,40,100)(41,141,61,121)(42,142,62,122)(43,143,63,123)(44,144,64,124)(45,145,65,125)(46,146,66,126)(47,147,67,127)(48,148,68,128)(49,149,69,129)(50,150,70,130)(51,151,71,131)(52,152,72,132)(53,153,73,133)(54,154,74,134)(55,155,75,135)(56,156,76,136)(57,157,77,137)(58,158,78,138)(59,159,79,139)(60,160,80,140) );
G=PermutationGroup([[(1,36),(2,37),(3,38),(4,39),(5,40),(6,31),(7,32),(8,33),(9,34),(10,35),(11,26),(12,27),(13,28),(14,29),(15,30),(16,21),(17,22),(18,23),(19,24),(20,25),(41,76),(42,77),(43,78),(44,79),(45,80),(46,71),(47,72),(48,73),(49,74),(50,75),(51,66),(52,67),(53,68),(54,69),(55,70),(56,61),(57,62),(58,63),(59,64),(60,65),(81,116),(82,117),(83,118),(84,119),(85,120),(86,111),(87,112),(88,113),(89,114),(90,115),(91,106),(92,107),(93,108),(94,109),(95,110),(96,101),(97,102),(98,103),(99,104),(100,105),(121,156),(122,157),(123,158),(124,159),(125,160),(126,151),(127,152),(128,153),(129,154),(130,155),(131,146),(132,147),(133,148),(134,149),(135,150),(136,141),(137,142),(138,143),(139,144),(140,145)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,20),(7,19),(8,18),(9,17),(10,16),(21,35),(22,34),(23,33),(24,32),(25,31),(26,40),(27,39),(28,38),(29,37),(30,36),(41,70),(42,69),(43,68),(44,67),(45,66),(46,65),(47,64),(48,63),(49,62),(50,61),(51,80),(52,79),(53,78),(54,77),(55,76),(56,75),(57,74),(58,73),(59,72),(60,71),(81,85),(82,84),(86,90),(87,89),(91,95),(92,94),(96,100),(97,99),(101,105),(102,104),(106,110),(107,109),(111,115),(112,114),(116,120),(117,119),(121,160),(122,159),(123,158),(124,157),(125,156),(126,155),(127,154),(128,153),(129,152),(130,151),(131,150),(132,149),(133,148),(134,147),(135,146),(136,145),(137,144),(138,143),(139,142),(140,141)], [(1,56,16,41),(2,57,17,42),(3,58,18,43),(4,59,19,44),(5,60,20,45),(6,51,11,46),(7,52,12,47),(8,53,13,48),(9,54,14,49),(10,55,15,50),(21,76,36,61),(22,77,37,62),(23,78,38,63),(24,79,39,64),(25,80,40,65),(26,71,31,66),(27,72,32,67),(28,73,33,68),(29,74,34,69),(30,75,35,70),(81,131,96,126),(82,132,97,127),(83,133,98,128),(84,134,99,129),(85,135,100,130),(86,136,91,121),(87,137,92,122),(88,138,93,123),(89,139,94,124),(90,140,95,125),(101,151,116,146),(102,152,117,147),(103,153,118,148),(104,154,119,149),(105,155,120,150),(106,156,111,141),(107,157,112,142),(108,158,113,143),(109,159,114,144),(110,160,115,145)], [(1,101,21,81),(2,102,22,82),(3,103,23,83),(4,104,24,84),(5,105,25,85),(6,106,26,86),(7,107,27,87),(8,108,28,88),(9,109,29,89),(10,110,30,90),(11,111,31,91),(12,112,32,92),(13,113,33,93),(14,114,34,94),(15,115,35,95),(16,116,36,96),(17,117,37,97),(18,118,38,98),(19,119,39,99),(20,120,40,100),(41,141,61,121),(42,142,62,122),(43,143,63,123),(44,144,64,124),(45,145,65,125),(46,146,66,126),(47,147,67,127),(48,148,68,128),(49,149,69,129),(50,150,70,130),(51,151,71,131),(52,152,72,132),(53,153,73,133),(54,154,74,134),(55,155,75,135),(56,156,76,136),(57,157,77,137),(58,158,78,138),(59,159,79,139),(60,160,80,140)]])
62 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4F | 4G | ··· | 4L | 5A | 5B | 10A | ··· | 10N | 20A | ··· | 20X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 20 | 20 | 4 | ··· | 4 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
62 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | - | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | D4 | Q8 | D5 | C4○D4 | D10 | C4○D20 | D4×D5 | Q8×D5 |
kernel | (C22×D5).Q8 | C5×C2.C42 | C2×C10.D4 | C2×D10⋊C4 | C2×Dic5 | C22×D5 | C2.C42 | C2×C10 | C22×C4 | C22 | C22 | C22 |
# reps | 1 | 1 | 3 | 3 | 6 | 2 | 2 | 6 | 6 | 24 | 6 | 2 |
Matrix representation of (C22×D5).Q8 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 40 |
0 | 0 | 0 | 0 | 1 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 35 | 1 |
0 | 0 | 0 | 0 | 6 | 6 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 39 | 28 |
0 | 0 | 0 | 0 | 13 | 2 |
0 | 40 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 35 |
0 | 0 | 0 | 0 | 6 | 23 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,1,0,0,0,0,40,0],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,35,6,0,0,0,0,1,6],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,39,13,0,0,0,0,28,2],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,18,6,0,0,0,0,35,23] >;
(C22×D5).Q8 in GAP, Magma, Sage, TeX
(C_2^2\times D_5).Q_8
% in TeX
G:=Group("(C2^2xD5).Q8");
// GroupNames label
G:=SmallGroup(320,303);
// by ID
G=gap.SmallGroup(320,303);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,64,1262,387,268,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^5=d^2=e^4=1,f^2=a*e^2,a*b=b*a,a*c=c*a,e*d*e^-1=a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,f*e*f^-1=b*e^-1>;
// generators/relations